Since \(\{(1,2),(-1,1)\}\) forms a basis of \(\R^2\) (the vectors are not parallel and there are two of them), it suffices to determine how to write a general vector in terms of this basis. Suppose
\begin{equation*}
x(1,2)+y(-1,1)=(a,b)
\end{equation*}
for a general element \((a,b)\in \R^2\text{.}\) This is equivalent to the matrix equation \(\bbm 1\amp -1\\2\amp 1\ebm\bbm x\\y\ebm = \bbm a\\b\ebm\text{,}\) which we can solve as \(\bbm x\\y\ebm = \bbm 1\amp -1\\2\amp 1\ebm^{-1}\bbm a\\b\ebm\text{:}\)
This gives us the result
\begin{equation*}
(a,b) = \frac13(a+b)\cdot (1,2)+\frac13(-2a+b)\cdot (-1,1).
\end{equation*}
Thus,
\begin{align*}
T(a,b) \amp = \frac13(a+b)\cdot T(1,2)+\frac13(-2a+b)\cdot T(-1,1) \\
\amp = \frac13(a+b)\cdot (1,1,0)+\frac13(-2a+b)\cdot (0,2,-1)\\
\amp = \left(\frac{a+b}{3}, -a+b, \frac{2a-b}{3}\right)\text{.}
\end{align*}
We conclude that
\begin{equation*}
T(3,2) = \left(\frac53, -1, \frac43\right)\text{.}
\end{equation*}